

Engineerin

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.



# 18ELE13/23

- Show that two wattmeters are sufficient to measure three phase power for a balanced star 4 a. connected load. (06 Marks)
  - b. Derive an expression for impedance, phase angle and power for series R-L circuit supplied with AC. (06 Marks)
  - c. How is current 10A shared by three impedance  $Z_1 = 2 j5\Omega$ ,  $Z_2 = 6.708 | 26.56 \Omega$ ,  $Z_3 = 3 + i4\Omega$  all are connected in parallel? (08 Marks)

### Module-3

- State the principle of operation of transformer. Derive an expression for emf induced in 5 a. transformer. (06 Marks)
  - Explain the operation of 3-way control of lamp with the help of diagram and functional b. table. (06 Marks)
  - c. Maximum efficiency at full load and unity power factor of a 1-phase, 25 kVA, 500/1000 V, 50 Hz transformer is 98%. Calculate its efficiency at: (i) 75% of full load, 0.9 p.f. (ii) 50% of full load, 0.8 p.f. (iii) 25% of full load, 0.6 p.f. (08 Marks)

### OR

- Briefly explain (i) Concealed wiring (ii) Service mains 6 a. (06 Marks)
  - Write short notes on: (i) Fuse (ii) MCB (06 Marks) b. c. A transformer working at unity power factor has an efficiency of 90% at both half load and at full load of 500 W. Determine the efficiency at 75% of full load. (08 Marks)

## Module-4

With a neat diagram, explain the constructional details of DC Generator. 7 a. (06 Marks)

- b. Derive an equation of torque of DC motor.
- A 4-pole lap wound shunt generator delivers 200 A at terminal voltage of 250 V. It has field C. and armature resistance 50  $\Omega$  and 0.05  $\Omega$  respectively. Neglect brush drop. Calculate: (ii) Current per parallel path (i) Armature current (iv) Power developed (08 Marks)

(iii) emf generated

### OR

Explain the significance of back emf in DC motor. 8 a. (04 Marks) b. Derive an emf equation of DC generator. (06 Marks) c. A 250 V DC shunt motor takes 6A line current on no load and runs at 1000 rpm. The field resistance is 250  $\Omega$  and armature resistance is 0.2  $\Omega$ . If the full load line current is 26A, calculate full load speed assuming constant air gap flux. (10 Marks)

# **Module-5**

9 a. With neat sketch, explain the constructional details of 3-phase alternator. (06 Marks) (06 Marks)

- b. Explain the operating principle of three phase induction motor.
- c. A 6-pole, 3-phase star connected alternator has 90 slots and 8 conductors per slot and rotates at 1000 rpm. The flux per pole is 50 mWb. Find the induced emf across its lines. Assume winding factors of 0.97. (08 Marks)

### OR

Explain the constructional details of 3-phase induction motor. Draw relevant sketches. **10** a.

(08 Marks)

- b. Derive an expression for frequency of induced emf in case of 3-phase alternator. (04 Marks)
- c. A 3-phase induction motor with 4-poles is supplied from an alternator having 6-poles and running at 1000 rpm. Calculate: (i) Synchronous speed of induction motor (ii) Its speed when slip is 0.04 (iii) Frequency of rotor emf when speed is 600 rpm. (08 Marks)

\* \* \* \* \* 2 of 2

(06 Marks)